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1|Introduction 

Over the past few decades, the vision of creating a direct link between the human brain and computational 

systems has evolved from science fiction into a rapidly advancing scientific discipline known as Brain–

Computer Interface (BCI). The fundamental goal of a BCI is to decode neural activity and translate it into 
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Abstract 

Brain–Computer Interface (BCI) systems translate neural activity into machine-interpretable commands, enabling 
direct communication between the brain and external devices. However, Electroencephalography (EEG) and  
Functional Near-Infrared Spectroscopy (FNIRS) signals used in BCIs are inherently noisy, non-stationary, and 
high-dimensional, making manual feature engineering and model tuning highly inefficient. Metaheuristic 
optimization algorithms, inspired by natural or social behaviors, have emerged as powerful tools for automating 
these processes. This review provides a comprehensive overview of how metaheuristics such as Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization 
(ACO), and Grey Wolf Optimizer (GWO) have been applied in EEG and FNIRS-based BCIs for channel 
selection, feature extraction, and classifier tuning. It also discusses the rise of hybrid EEG–FNIRS systems and 
the integration of metaheuristics with deep learning, Reinforcement Learning (RL), and transfer learning 
frameworks to enhance adaptability and cross-session generalization. A dedicated case study highlights the Trees 
Social Relationship (TSR) algorithm, a novel ecology-inspired metaheuristic that balances cooperation and 
competition among solutions. TSR demonstrates strong potential for feature selection, neural network 
optimization, and adaptive BCI calibration, outperforming traditional algorithms in convergence speed and 
stability. Collectively, the review identifies key trends from 2020 to 2025, including hybrid and multi-objective 
metaheuristics, real-time adaptation, and explainable optimization frameworks. The study concludes that 
metaheuristics are not merely auxiliary tools but foundational elements in building intelligent, robust, and self-
adaptive BCI systems capable of real-world operation.  
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  control commands for external devices, bypassing conventional neuromuscular pathways. This allows 

individuals to interact with their environment solely through thought. BCIs have profound implications for 

medical rehabilitation, assistive communication, neuroprosthetics, and cognitive enhancement. Beyond 

clinical use, BCIs are being explored in gaming, education, mental health monitoring, and human–machine 

interaction, marking a new era in how humans and machines communicate [1]. 

A modern BCI system typically consists of several processing stages: signal acquisition, preprocessing, feature 

extraction, feature selection, classification, and feedback generation. The first step involves capturing brain 

activity through neuroimaging or electrophysiological methods. Depending on the application, BCIs can be 

invasive (e.g., electrocorticography, intracortical electrodes) or non-invasive (e.g., Electroencephalography 

(EEG), Magnetoencephalography (MEG), or Functional Near-Infrared Spectroscopy (FNIRS)). While 

invasive BCIs offer high precision, they are associated with surgical risks and ethical constraints. 

Consequently, non-invasive BCIs have gained more widespread attention due to their safety, lower cost, and 

ease of use [2]. 

1.1|Electroencephalography and Functional Near-Infrared Spectroscopy 

as Non-Invasive Modalities 

Among non-invasive modalities, EEG and FNIRS are two of the most popular and complementary 

techniques. EEG records the brain’s electrical activity using scalp electrodes, providing a millisecond-level 

temporal resolution. This makes it ideal for capturing fast neural oscillations and event-related potentials 

associated with motor, sensory, or cognitive events. However, EEG suffers from limited spatial resolution 

and is highly sensitive to artifacts from muscle movement, eye blinks, and environmental noise [3]. In contrast, 

FNIRS measures hemodynamic changes in the cerebral cortex by tracking Oxygenated (HbO) and 

Deoxygenated Hemoglobin (HbR) concentrations using near-infrared light. It provides better spatial 

localization than EEG and is relatively immune to electrical noise. The trade-off is that FNIRS has poor 

temporal resolution and a delay of several seconds due to the hemodynamic response. Despite this limitation, 

FNIRS is valuable for understanding cortical activation patterns during cognitive tasks [4]. 

When used together, EEG and FNIRS form a hybrid BCI system that captures both rapid electrical activity 

and slower hemodynamic changes, offering a more comprehensive view of brain dynamics. Such fusion 

enables improved classification accuracy, greater robustness to noise, and richer physiological interpretation. 

For example, EEG may detect an immediate motor intention, while FNIRS confirms sustained cortical 

activation related to that intention. Hybrid BCIs have been shown to enhance control reliability, making them 

promising for neurorehabilitation and mental-state monitoring applications [5]. 

1.2|Challenges in Current Brain–Computer Interface Systems 

Despite significant progress, several obstacles hinder the practical deployment of BCIs. The first challenge 

lies in the non-stationary and noisy nature of neural signals. Artifacts from muscle activity, respiration, and 

motion often contaminate EEG and FNIRS signals. Moreover, neural patterns vary across sessions, subjects, 

and even within the same individual due to fatigue or attention shifts. This variability leads to poor 

generalization of models trained on one dataset when applied to new conditions [6], [7]. 

Another challenge is the high dimensionality of brain data. A typical EEG system may record signals from 32 

to 128 channels, each sampled at hundreds of hertz. Similarly, FNIRS sensors may collect multiple wavelength 

readings per channel. These large datasets contain redundant and irrelevant information, making feature 

extraction and selection critical. Selecting optimal feature and parameter subsets is nontrivial because 

exhaustive search is computationally infeasible. Consequently, manual or heuristic tuning often leads to 

suboptimal results [7]. A further limitation concerns calibration and adaptation. Traditional BCIs require each 

user to undergo a lengthy calibration phase to collect labeled data and train a classifier. This process is time-

consuming and uncomfortable, particularly for patients. Moreover, models degrade over time as brain 

dynamics evolve, requiring periodic recalibration. An ideal BCI should minimize calibration time and adapt 
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  dynamically to new sessions or users without performance loss. Lastly, real-time operation is a key 

requirement for practical BCIs. Algorithms must process data quickly to provide instantaneous feedback, 

especially in closed-loop control systems such as neuroprosthetics or robotic arms. Achieving high accuracy 

while maintaining low latency and computational efficiency remains a delicate balance [8]. 

1.3|The Role of Optimization in Brain–Computer Interfaces 

Optimization is the backbone of every machine learning and signal processing pipeline. In BCI, optimization 

problems take many forms: selecting filter parameters, determining the best feature subsets, adjusting classifier 

weights, and fine-tuning deep network architectures. Each stage requires decisions that affect performance, 

yet the search space is vast, nonlinear, and multidimensional. Traditional optimization techniques such as 

gradient descent, grid search, or convex optimization are often unsuitable for BCI problems because the 

underlying objective functions are non-differentiable, stochastic, and multimodal. Additionally, many BCI-

related objectives, such as maximizing accuracy while minimizing the number of selected channels, are 

inherently multi-objective and discrete, further complicating the optimization process. 

This is where metaheuristic algorithms come into play. Metaheuristics are general-purpose optimization 

strategies inspired by natural and social phenomena such as evolution, swarm behavior, or physical laws. They 

do not rely on gradient information, making them ideal for complex, black-box optimization problems. 

Metaheuristics strike a balance between exploration (searching broadly across the solution space) and 

exploitation (refining promising areas), enabling them to escape local minima and find near-optimal solutions 

efficiently [8]. 

1.4|Metaheuristics: Concepts and Motivation 

The term metaheuristic derives from the Greek words meta (beyond) and heuriskein (to find). These 

algorithms provide high-level strategies that guide lower-level heuristics to explore solution spaces 

intelligently. Over the years, metaheuristics have been classified into several categories: 

I. Evolutionary Algorithms (EAs): these include Genetic Algorithms (GA), Differential Evolution (DE), and 

evolutionary strategies, which mimic natural selection and genetics. 

II. Swarm Intelligence (SI): algorithms such as Particle Swarm Optimization (PSO), Ant Colony Optimization 

(ACO), and the Grey Wolf Optimizer (GWO) simulate collective behaviors observed in animals. 

III. Physics-based methods include Simulated Annealing (SA) and the Gravitational Search Algorithm (GSA), 

which model physical processes. 

IV. Human or social-based algorithms: newer algorithms such as Teaching–Learning-Based Optimization 

(TLBO) or the Trees Social Relationship (TSR) algorithm draw inspiration from human or ecological 

interactions. 

In BCI research, these algorithms are primarily used for feature selection, parameter optimization, and 

classifier tuning. For instance, GA may evolve feature subsets that yield higher classification accuracy, while 

PSO may optimize neural network hyperparameters for EEG classification. The combination of exploration 

and adaptability makes metaheuristics particularly powerful for EEG and FNIRS data, where the signal space 

is complex and dynamic [9]. 

1.5|Why Metaheuristics Fit the Brain–Computer Interface Domain 

Several inherent characteristics of BCI problems make them ideally suited for metaheuristic optimization: 

I. High dimensionality: EEG and FNIRS signals produce vast feature spaces. Metaheuristics can efficiently 

search these spaces without exhaustive evaluation. 

II. Nonlinearity: the relationship between neural features and cognitive states is nonlinear and often unknown. 

Metaheuristics do not require explicit mathematical models, allowing flexible adaptation. 
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  III. Noise and uncertainty: metaheuristics tolerate noisy objective evaluations, making them robust against 

imperfect training data. 

IV. Hybrid objective functions: BCI tasks often involve trade-offs, such as maximizing accuracy while 

minimizing latency or the number of electrodes. Multi-objective metaheuristics (like NSGA-II or SPEA-

II) can handle such scenarios effectively. 

V. Adaptation over time: the stochastic nature of metaheuristics enables online adaptation, an attractive 

feature for real-time BCI applications in which brain states evolve. 

Because of these strengths, metaheuristics have been successfully used to enhance EEG- and FNIRS-based 

BCIs across diverse applications, including Motor Imagery (MI) classification, emotion recognition, mental 

workload estimation, and speech MI decoding [2], [10]. 

1.6|Typical Applications in Brain–Computer Interface Research 

In recent literature, metaheuristic algorithms have found roles in almost every stage of BCI processing: 

Feature selection and channel reduction 

Selecting a subset of relevant channels or features can drastically reduce computational cost and improve 

generalization. Algorithms like GA, PSO, and GWO have been used to identify optimal EEG channels for 

MI and mental workload tasks. In FNIRS, metaheuristics help identify wavelength–region combinations that 

maximize discriminative power. 

Classifier parameter tuning 

Many classifiers, including Support Vector Machines (SVMs), K-Nearest Neighbors (KNNs), and Deep 

Neural Networks (DNNs), require parameter tuning. PSO and DE have been applied to optimize 

hyperparameters, such as kernel coefficients and network learning rates, resulting in significant gains in 

classification accuracy. 

Hybrid optimization 

Recent works combine metaheuristics with machine learning and deep learning techniques. For example, 

hybrid CNN–GWO or ABC–PSO models simultaneously optimize feature extraction and classification, 

resulting in end-to-end adaptive systems. These methods outperform manually tuned models in most cases. 

Transfer learning and adaptation. 

Some studies explore using metaheuristics to guide domain adaptation across subjects or sessions. This 

approach minimizes calibration time by transferring knowledge while maintaining accuracy. Although still 

emerging, it holds promise for practical, real-world BCI deployment. 

Model compression and deployment 

For portable or edge-implemented BCIs, minimizing computational load is vital. Metaheuristics can prune 

neural networks or compress model architectures without significant performance degradation, supporting 

real-time usability [11–13]. 

1.7|Recent Developments and the Trees' Social Relationship Algorithm 

While classical metaheuristics like GA, PSO, and ACO have dominated for years, researchers continue to 

develop newer algorithms with improved convergence and diversity handling. One such innovation is the 

TSR algorithm, introduced in recent years. TSR draws inspiration from how trees interact in an ecosystem, 

sharing resources through interconnected root systems and competing for sunlight. This natural balance of 

cooperation and competition allows TSR to adapt its exploration–exploitation trade-off dynamically. 

In TSR, each candidate solution is represented as a “tree” that exchanges information with its neighbors, 

reflecting mutual growth relationships. The algorithm uses nutrient-sharing (akin to information sharing) to 
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  encourage promising solutions and competitive exclusion to eliminate poor ones. This design allows TSR to 

maintain population diversity while focusing search around high-potential regions. Early experiments show 

that TSR performs competitively with, or better than, established methods for optimizing continuous and 

discrete problems, making it a promising candidate for BCI applications. 

In the BCI context, TSR could optimize multi-objective problems such as maximizing classification accuracy 

while minimizing latency and electrode count. It may also be used to tune hyperparameters of deep learning 

architectures or select hybrid EEG–FNIRS feature subsets. Unlike some metaheuristics that tend to converge 

prematurely, TSR’s ecosystem-inspired interactions make it resilient against stagnation [14–16]. 

1.8|The Need for a Comprehensive Review 

Despite the rapid adoption of metaheuristics in BCI research, most studies focus on a single algorithm or 

application. A unified perspective on how these algorithms compare across modalities (EEG, FNIRS, hybrid), 

tasks (MI, emotion, speech), and objectives (feature selection, adaptation) is lacking. Moreover, new 

algorithms such as TSR and hybrid approaches integrating metaheuristics with Reinforcement Learning (RL) 

remain underexplored. 

Therefore, a systematic review is necessary to consolidate existing knowledge, highlight recent advancements, 

and identify open research gaps. Such a review can help the research community better understand how 

metaheuristics contribute to improved feature efficiency, reduced calibration error, and better generalization. 

Furthermore, it can inspire future exploration into combining optimization strategies with adaptive learning, 

self-supervised modeling, and explainable AI frameworks [7], [17]. 

1.9|Scope and Objectives of This Review 

This review provides a comprehensive overview of the use of metaheuristic algorithms in brain–computer 

interfaces, focusing on both EEG and hybrid EEG–FNIRS modalities. The objectives are as follows: 

I. Summarize existing metaheuristic approaches applied to BCI signal processing and classification. 

II. Discuss how these algorithms improve performance, particularly in feature selection, parameter optimization, 

and cross-domain adaptation. 

III. Compare traditional algorithms (GA, PSO, DE, ACO, GWO) with emerging methods like TSR. 

IV. Highlight recent trends from 2020 to 2025, including hybrid deep–metaheuristic architectures and multi-

objective optimization. 

V. Identify challenges and future directions, such as online adaptation, real-time deployment, and integration 

with reinforcement or transfer learning. 

By analyzing these aspects, the review aims to bridge the gap between classical optimization theory and its 

modern applications in BCI. It also seeks to position metaheuristic algorithms not just as auxiliary tools but 

as foundational components driving the next generation of adaptive, intelligent, and interpretable BCI systems 

[7], [18]. 

2|Related Work 

Over the past two decades, the use of metaheuristic algorithms in BCI research has transitioned from 

experimental novelty to a cornerstone methodology for optimizing signal processing, feature extraction, and 

classification pipelines. The concept of applying population-based optimization to brain signals arose from 

the realization that EEG and FNIRS data are inherently high-dimensional, non-stationary, and nonlinear. 

Traditional deterministic or gradient-based optimization methods often fail to handle these complexities. 

Consequently, metaheuristics inspired by natural and collective intelligence emerged as ideal candidates for 

searching large, noisy parameter spaces [7]. 
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  2.1|Early Developments in Metaheuristic-Based Brain–Computer Interfaces 

The earliest applications of metaheuristics in BCI date back to the late 2000s, primarily involving GA for 

channel selection and parameter tuning in EEG-based MI classification. These pioneering studies 

demonstrated that GA could effectively identify a reduced subset of electrodes while maintaining 

classification accuracy comparable to or superior to that of full-channel configurations. This early success 

validated the potential of evolutionary optimization for EEG signal analysis [19]. 

During the 2010s, as computational resources improved, PSO became widely adopted in feature extraction 

and classifier parameter optimization. PSO’s ability to handle continuous search spaces made it particularly 

suitable for tuning hyperparameters of machine learning classifiers, such as SVM and Artificial Neural 

Networks (ANNs). Researchers observed that PSO not only achieved faster convergence than GA but also 

produced smoother optimization landscapes, leading to more stable classification results. At the same time, 

DE and ACO began to attract attention. DE was favored for its robustness against noisy objective functions, 

an essential trait given the EEG’s variability. ACO, originally developed for discrete optimization problems, 

was adapted for selecting optimal feature subsets and spatial filters. Collectively, these early studies 

demonstrated that metaheuristics could significantly outperform random or exhaustive search methods, 

paving the way for more sophisticated applications. However, until around 2018, most implementations were 

relatively narrow in scope, focusing on static datasets, single subjects, or offline analyses. The last five years 

have seen a paradigm shift: researchers now employ metaheuristics for real-time BCIs, cross-subject 

generalization, and multimodal integration, reflecting a broader and more ambitious view of optimization in 

brain-signal processing [19]. 

2.2|Feature Selection and Channel Optimization 

Feature selection remains one of the most popular applications of metaheuristics in BCI research. EEG and 

FNIRS signals are typically characterized by a large number of features extracted from time, frequency, and 

time–frequency domains. However, not all features contribute equally to classification; redundant or noisy 

features can degrade performance and increase computational complexity. Metaheuristics address this by 

intelligently exploring feature subsets to maximize classification accuracy while minimizing redundancy [11]. 

2.2.1|Electroencephalography-based feature selection 

EEG algorithm, inspired by the foraging behavior of bees. ABC has demonstrated excellent performance in 

reducing feature dimensionality for emotion recognition using EEG signals. By dynamically balancing 

exploration (scout bees searching for new solutions) and exploitation (employed bees refining known 

solutions), ABC yields compact feature sets that generalize well across participants. 

2.2.2|Functional near-infrared spectroscopy-based feature selection 

In FNIRS-based BCIs, metaheuristics have been applied to select optimal features from HbO and HbR 

signals. Since FNIRS signals are slower and less noisy than EEG, feature extraction often involves statistical 

descriptors such as mean, slope, skewness, and kurtosis. In recent work, PSO and GWO have been employed 

to identify the most discriminative FNIRS features during mental arithmetic and MI tasks. These algorithms 

improved classification performance by over 5–10% relative to manual feature selection, highlighting their 

adaptability across modalities [11]. 

A particularly impactful study applied seven different metaheuristic optimizers, including PSO, the Firefly 

Algorithm (FA), the Bat Algorithm (BA), and GWO, to the same FNIRS dataset. Results showed that all 

algorithms improved accuracy, but GWO achieved the best performance and the fastest convergence. This 

study established GWO as a robust choice for hemodynamic feature selection [11]. 
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  2.2.3|Hybrid electroencephalography–functional near-infrared spectroscopy feature 

selection 

Hybrid BCIs that combine EEG and FNIRS data introduce new challenges, as the feature space becomes 

exponentially larger. Metaheuristics are increasingly used to handle this complexity. Researchers have 

proposed multi-objective optimization frameworks in which one objective maximizes classification accuracy, 

and another minimizes feature count. Hybrid variants, such as the Enhanced Whale Optimization Algorithm 

(E-WOA), have demonstrated exceptional performance in selecting complementary EEG and FNIRS 

features, outperforming classical optimizers by nearly 4% in accuracy. The success of metaheuristics in feature 

selection underscores their importance as general-purpose tools for balancing accuracy and computational 

efficiency, especially in hybrid systems with high feature redundancy [11]. 

2.3|Classifier Tuning and Model Optimization 

While feature selection has dominated earlier studies, recent research has shifted toward tuning classifiers and 

learning architectures using metaheuristics. In traditional BCI pipelines, classifier parameters, such as kernel 

type, regularization coefficient, and learning rate, significantly affect performance. Manual tuning is inefficient 

and may overlook optimal configurations; hence, population-based optimization has become a standard 

solution. 

2.3.1|Tuning classical machine learning models 

SVMs are among the most common classifiers in BCI systems. Metaheuristics such as PSO and GA have 

been widely used to tune their hyperparameters (e.g., the penalty parameter C and the kernel parameter γ). 

Studies have shown that optimized SVMs consistently outperform default configurations, particularly in noisy 

or imbalanced EEG datasets. DE has also been employed to optimize both SVM and KNN classifiers, 

resulting in smoother convergence and greater stability. 

Random Forests and Extreme Learning Machines (ELMs) have similarly benefited from metaheuristic-based 

parameter tuning. For instance, GWO has been used to optimize the number of hidden neurons in ELMs, 

improving classification accuracy without increasing computational load [20]. 

2.3.2|Optimizing neural network architectures 

As deep learning gained prominence in BCI research, metaheuristics emerged as a new tool for optimizing 

deep network architectures. Algorithms such as GA, PSO, and ABC have been used to select the number of 

layers, neurons, activation functions, and learning rates. The results indicate that metaheuristic-tuned 

networks outperform manually designed ones in both accuracy and generalization. 

For example, hybrid CNN architectures optimized with an ABC–GWO strategy have achieved state-of-the-

art accuracy in EEG emotion recognition. The metaheuristic component ensures that the network 

architecture dynamically adapts to signal complexity, avoiding overfitting and redundant computations [20]. 

2.3.3|Deep reinforcement and adaptive models 

More recently, metaheuristics have been combined with RL and adaptive algorithms to improve real-time 

adaptability. RL aims to train agents that adapt to user feedback or reward signals, but the performance of 

such models depends heavily on hyperparameters. Metaheuristics can optimize these parameters, ensuring 

that RL-based BCIs learn efficiently. This integration creates closed-loop systems that self-adjust during 

operation, marking a step toward autonomous BCIs [20]. 

2.4|Hybrid Electroencephalography–Functional Near-Infrared Spectroscopy 

and Multimodal Optimization 

Hybrid EEG–FNIRS systems have become a focal point of BCI research due to their potential to combine 

the speed of EEG with the spatial detail of FNIRS. However, integrating these modalities poses challenges: 
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  synchronizing signals, aligning features, and balancing information across modalities. Metaheuristics offer 

elegant solutions to these problems. 

Recent hybrid studies have used multi-objective optimizers such as NSGA-II and SPEA-II to select optimal 

feature sets from EEG and FNIRS signals jointly. These algorithms generate Pareto-optimal fronts that 

represent trade-offs between conflicting objectives, such as accuracy and feature count. For example, hybrid 

feature optimization using PSO and DE has been shown to improve both robustness and interpretability, 

which are critical for clinical applications [20]. 

Additionally, some works combine metaheuristics with transfer learning, using optimization to align feature 

spaces across subjects. This reduces calibration time and increases generalization, one of the most persistent 

challenges in BCI. Such hybrid frameworks suggest that optimization will be key to achieving plug-and-play 

BCIs that adapt across users and sessions [20]. 

2.5|Emerging Algorithms and Bio-Inspired Innovations 

The past five years have witnessed an explosion of new metaheuristic algorithms inspired by ecology, social 

structures, and evolutionary processes. While traditional methods such as GA, PSO, and ACO remain 

dominant, newer algorithms offer novel mechanisms for balancing exploration and exploitation [20]. 

2.5.1|Whale, Moth, and Cuckoo search algorithms 

Bio-inspired algorithms such as the Whale Optimization Algorithm (WOA), Moth Flame Optimization 

(MFO), and Cuckoo Search (CS) have been successfully applied to BCI feature optimization. WOA, modeled 

on the bubble-net hunting strategy of humpback whales, has been particularly effective in selecting features 

for emotion recognition and MI classification. Its adaptive encircling mechanism allows it to converge rapidly 

without losing population diversity. 

MFO and CS, although less common in BCI, have shown potential for EEG feature ranking and hybrid 

feature fusion tasks. Their ability to navigate large search spaces with low parameter sensitivity makes them 

suitable candidates for multimodal fusion problems [20]. 

2.5.2|The tree's social relationship algorithm 

A major addition to the metaheuristic family is the TSR algorithm. Unlike swarm-based or evolutionary 

methods, TSR is modeled after the ecological interactions among trees in a forest, including cooperation 

(nutrient sharing) and competition (for sunlight). Each solution is treated as a “tree” that exchanges resources 

with others based on proximity and fitness. 

TSR’s hybrid mechanism allows it to maintain population diversity longer than many traditional algorithms, 

avoiding premature convergence. Its adaptability to both discrete and continuous optimization tasks makes it 

particularly promising for EEG–FNIRS systems, which involve mixed-domain data. Initial experiments 

outside the BCI (e.g., image segmentation and process optimization) indicate that TSR outperforms classical 

algorithms such as PSO and DE in terms of convergence rate and solution stability. Translating these benefits 

to BCI could lead to more efficient feature selection, hyperparameter tuning, and adaptive model training 

[20]. 

2.5.3|Hybrid and ensemble metaheuristics 

An emerging trend is the fusion of multiple metaheuristic algorithms to create hybrid optimizers. For instance, 

combining GWO with PSO or ABC with DE has produced robust results in EEG feature selection. These 

ensemble strategies exploit the strengths of individual algorithms while compensating for their weaknesses. 

Hybrid metaheuristics are especially useful for non-convex optimization landscapes where single algorithms 

struggle. 

In BCI, hybrid approaches are being explored for emotion recognition, cognitive workload assessment, and 

speech MI. For example, an ABC–GWO hybrid was shown to improve CNN-based emotion recognition 
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  accuracy by nearly 10% compared to traditional deep networks. These results suggest that multi-strategy 

optimization could become a dominant approach in future BCI systems [20]. 

2.6|Comparative Analyses and Benchmarks 

Several studies have compared the performance of multiple metaheuristics on standard EEG or FNIRS 

datasets. Results generally reveal that no single algorithm universally outperforms others; performance often 

depends on data characteristics and problem formulation. However, some patterns emerge: 

I. GWO and its variants tend to perform best in feature selection due to their adaptive balance of exploration 

and exploitation. 

II. PSO excels in continuous parameter tuning but is prone to premature convergence without diversity control. 

III. GA performs well in discrete search spaces but can be computationally intensive. 

IV. Newer methods like WOA, Firefly, and TSR show promise but require further benchmarking. 

V. Benchmarking efforts remain fragmented, as different studies use different datasets, preprocessing methods, 

and classifiers. The lack of standardized evaluation protocols remains an open issue in assessing algorithmic 

superiority objectively [1]. 

2.7|Challenges and Research Gaps 

Despite substantial progress, several challenges persist in applying metaheuristics to BCI: 

I. Computational efficiency: Most metaheuristics are iterative and require numerous fitness evaluations. This 

can be prohibitive for real-time BCIs unless parallelized or simplified. 

II. Parameter sensitivity: many algorithms depend on parameters (e.g., the inertia weight in PSO and the 

crossover rate in GA). Improper tuning may lead to poor convergence. 

III. Cross-subject generalization: most studies optimize models for a single user or session. Metaheuristics for 

transfer learning and cross-subject adaptation remain underexplored. 

IV. Hybrid BCI complexity: as hybrid EEG–FNIRS systems generate enormous feature spaces, optimization 

becomes computationally demanding. Multi-objective and distributed metaheuristics may help, but are still 

in their infancy. 

V. Interpretability: while metaheuristics can effectively select features, understanding why those features are 

optimal from a neurophysiological perspective remains challenging. Integrating explainable AI with 

optimization could address this gap [20]. 

2.8|Summary of the Research Landscape 

Overall, the literature demonstrates a clear trajectory: from using simple GA-based feature selection in early 

EEG studies to employing sophisticated hybrid metaheuristics for multimodal deep learning optimization. 

The timeline of this evolution aligns with advances in computational power and the growing emphasis on 

adaptive, real-time BCI systems. 

Recent years (2020–2025) have introduced three key trends: 

I. Integration of deep learning and metaheuristics: using metaheuristics to optimize deep architectures like 

CNNs and RNNs for EEG classification. 

II. Hybrid and multi-objective optimization: applying advanced algorithms such as NSGA-II, E-WOA, and 

TSR to handle multimodal and multi-criteria tasks. 

III. Toward real-time adaptive BCIs: leveraging metaheuristic optimization within RL or continual learning 

frameworks for on-the-fly adaptation. 
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  Collectively, these trends illustrate a shift from offline experimentation to adaptive, explainable, and efficient 

BCI systems driven by optimization intelligence. 

3|Common Metaheuristic Algorithms 

Metaheuristic algorithms have become a central tool in optimizing BCI systems due to their ability to handle 

nonlinear, stochastic, and high-dimensional optimization problems. Unlike deterministic or gradient-based 

approaches, metaheuristics do not require analytical gradients or convexity assumptions, making them highly 

suitable for complex domains such as EEG and FNIRS signal processing. These algorithms explore vast 

search spaces through adaptive, population-based mechanisms inspired by biological evolution, animal 

swarming, or social and physical phenomena [9]. 

In the context of BCI, metaheuristics are primarily employed for three key purposes: feature selection, 

classifier parameter tuning, and channel optimization. Each of these tasks presents a distinct optimization 

landscape, some continuous, some discrete, and many multimodal, necessitating algorithms that can 

efficiently balance exploration (global search) and exploitation (local refinement). Among the numerous 

techniques developed over the years, five have emerged as foundational in BCI research: GA, PSO, DE, 

ACO, and GWO. These algorithms represent diverse philosophies of search behavior, each offering unique 

advantages and limitations depending on the specific task and signal modality. 

The following subsections present an overview of these common metaheuristic algorithms, their working 

principles, and their relevance to BCI optimization [9], [12]. 

3.1|Genetic Algorithm 

The GA is one of the earliest and most widely adopted metaheuristics. Introduced by John Holland in the 

1970s, GA is inspired by the principles of natural evolution, selection, crossover, and mutation. A GA begins 

with a population of candidate solutions, often represented as binary strings (chromosomes). Each 

chromosome encodes a potential solution to the optimization problem, and its quality is assessed using a 

fitness function that reflects the objective to be optimized, such as maximizing classification accuracy or 

minimizing error. 

3.1.1| mechanism and workflow 

GA operates through iterative cycles known as generations. In each generation, the algorithm selects fitter 

individuals using selection strategies such as roulette wheel, tournament, or rank selection. These selected 

individuals undergo crossover, exchanging parts of their chromosomes to generate new offspring, followed 

by mutation, which introduces small random variations. This process mimics genetic evolution, gradually 

driving the population toward fitter solutions. 

A standard GA follows these steps: 

I. Initialization–randomly generate a population of candidate solutions. 

II. Evaluation–compute the fitness of each individual using an objective function. 

III. Selection–choose individuals based on fitness. 

IV. Crossover and mutation–create new individuals by recombination and random alteration. 

V. Replacement–form a new population for the next generation. 

VI. Termination–repeat until convergence or a stopping criterion is met. 

3.1.2|Applications in brain–computer interface 

GA has been widely applied to feature selection for EEG-based MI and emotion recognition tasks. In MI 

classification, GA can identify optimal subsets of frequency-domain or spatial features derived from 
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  techniques like Common Spatial Pattern (CSP) analysis. Studies show that GA-selected features achieve 

higher accuracy with fewer channels than using all features. 

In parameter tuning, GA has been employed to optimize hyperparameters for classifiers such as SVM and 

KNN, where traditional grid search methods are computationally expensive. For example, GA can evolve the 

penalty parameter (C) and kernel width (γ) of SVMs to maximize classification performance. GA’s discrete 

representation also makes it ideal for selecting electrode combinations in multi-channel EEG systems, 

reducing computational cost while maintaining robust decoding performance. 

Despite its versatility, GA’s major drawbacks include relatively slow convergence and the risk of premature 

stagnation if diversity is not maintained. However, hybrid GA variants, such as GA combined with PSO or 

fuzzy logic, have mitigated these limitations, achieving faster, more stable results in BCI applications. 

3.2|Particle Swarm Optimization 

PSO, introduced by Kennedy and Eberhart in 1995, draws inspiration from the collective behavior of birds 

flocking or fish schooling. Unlike GA, which relies on evolutionary operators, PSO is a population-based 

search that updates candidate solutions (particles) based on their positions and velocities in the search space. 

3.2.1| mechanism and workflow 

Each particle in the swarm represents a potential solution characterized by a position vector (its current 

candidate solution) and a velocity vector (its direction of movement). The particles move through the search 

space influenced by: 

I. Their personal best position (pBest) is the best solution found by that particle so far. 

II. The global best position (gBest) is the best solution found by the entire swarm. 

At each iteration, a particle updates its velocity and position using the following equations: 

Where w is the inertia weight controlling exploration, c₁ and c₂ are acceleration coefficients for cognitive and 

social influence, and r₁ and r₂ are random factors introducing stochasticity [21]. 

3.2.2|Applications in brain–computer interface 

PSO’s simplicity and continuous search capability have made it a favorite for optimizing real-valued 

parameters in EEG and FNIRS systems. In EEG feature extraction, PSO has been used to optimize spatial 

filters in CSP-based frameworks, improving discrimination between MI classes. Similarly, PSO has tuned 

time–frequency window sizes in wavelet-based features for emotion recognition tasks. 

Another common use of PSO is in classifier optimization. For instance, PSO can automatically determine 

neural network weights or SVM kernel parameters. In adaptive BCIs, PSO has also been used to adjust 

feedback parameters, thereby enhancing user training efficiency dynamically. 

PSO’s convergence speed and ability to exploit global knowledge make it efficient for large-scale optimization 

problems. However, its tendency to converge prematurely toward local minima in highly multimodal 

landscapes can be problematic. To counter this, variants such as Quantum-Behaved PSO (QPSO) and 

Chaotic PSO have been introduced to enhance diversity and escape local traps, showing improved robustness 

in EEG optimization tasks [18]. 

3.3|Differential Evolution 

DE, developed by Storn and Price in 1997, is another evolutionary algorithm that excels in continuous 

optimization. It combines the concepts of mutation, crossover, and selection like GA, but operates on real-

valued vectors, making it suitable for tuning continuous parameters. 

vi(t + 1) = w ⋅ vi(t) + c1r1(pBesti − xi(t)) + c2r2(gBest − xi(t)), 

xi(t + 1) = xi(t) + vi(t + 1), 
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  3.3.1| mechanism and workflow 

In DE, each candidate solution (vector) generates a mutant vector by adding the weighted difference between 

two population vectors to a third vector. A crossover operation mixes the mutant with the original vector to 

form a trial vector. The selection step compares the trial vector with the original and retains the one with 

better fitness. The mutation process is expressed as: 

Where x₍r1₎, x₍r2₎, and x₍r3₎ are distinct randomly selected individuals, and F is a scaling factor controlling 

the amplification of differential variations. 

3.3.2|Applications in brain–computer interface 

DE’s strength lies in its simplicity and its ability to handle noisy fitness landscapes, which are common in 

EEG and FNIRS signals. It has been successfully applied to optimize feature-extraction parameters, such as 

spectral frequency bands, and to tune classifier weights in multi-layer perceptron and convolutional network 

architectures. 

In MI classification, DE has been used to optimize parameters in adaptive filter banks, enhancing the 

separability of left–right MI tasks. DE’s balance between exploration and exploitation makes it a reliable 

alternative to PSO for continuous optimization problems, particularly when the objective function is rugged 

or contains plateaus. 

Moreover, DE’s population-based design allows it to integrate naturally into multi-objective frameworks, 

enabling optimization across accuracy, latency, and energy consumption. Hybrid models combining DE with 

RL have also been explored, where DE optimizes RL hyperparameters to improve the adaptability of real-

time BCIs. 

3.4|Ant Colony Optimization 

ACO, proposed by Dorigo in 1992, is inspired by the foraging behavior of ants. When searching for food, 

ants deposit pheromones on paths, guiding other ants toward promising routes. Over time, shorter and more 

efficient paths accumulate more pheromone, reinforcing optimal routes. 

3.4.1| mechanism and workflow 

In ACO, artificial ants construct candidate solutions step by step, guided by a pheromone matrix representing 

learned desirability. The probability of choosing a specific component depends on the pheromone level 

(indicating prior success) and heuristic information (problem-specific cues). After each iteration, pheromone 

levels are updated, evaporating over time to prevent stagnation and to concentrate on better solutions. 

ACO is particularly effective for combinatorial optimization, where solutions can be represented as paths or 

sequences, such as selecting subsets of EEG channels or features. 

3.4.2|Applications in brain–computer interface 

In BCI research, ACO has been widely applied to channel selection and discrete feature optimization. For 

instance, in EEG MI studies, ACO identifies optimal electrode subsets that maximize classification accuracy 

while minimizing computational cost. This is especially important in portable BCIs, where fewer electrodes 

are desirable for usability and comfort. 

ACO has also been integrated with feature selection wrappers, where the pheromone trail corresponds to the 

discriminative power of selected features. Compared to GA, ACO tends to converge faster and produce more 

stable feature subsets. Its main limitation lies in tuning its pheromone evaporation and reinforcement rates, 

which can significantly affect convergence speed. To address this, adaptive ACO variants dynamically adjust 

vi = xr1 + F(xr2 − xr3),  
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  their parameters based on population diversity, thereby achieving improved performance on EEG emotion 

recognition and workload estimation tasks [12]. 

3.5|Grey Wolf Optimizer 

The GWO, introduced by Mirjalili in 2014, is a relatively recent addition to the family of SI algorithms. It 

models the leadership hierarchy and hunting strategies of grey wolves in nature. Wolves live in packs 

structured into four roles: alpha, beta, delta, and omega, each contributing differently to decision-making and 

movement within the search space. 

3.5.1| mechanism and workflow 

GWO simulates the process of encircling, hunting, and attacking prey: 

I. The alpha wolf represents the best solution, the beta and delta wolves represent the next best, and the omega 

wolves follow. 

II. Wolves update their positions based on the locations of alpha, beta, and delta, thus balancing exploration and 

exploitation. 

III. The equation governs the encircling behavior: 

 

where D, A, and C are coefficient vectors controlling step size and direction. 

As iterations progress, A decreases linearly, shifting the search from exploration to exploitation, ensuring 

convergence toward the best solution [18], [19]. 

3.5.2|Applications in brain–computer interface 

GWO has gained remarkable popularity in EEG and FNIRS optimization due to its strong convergence and 

parameter-free nature. It has been used to select EEG channels, tune CNN architectures, and optimize feature 

subsets for hybrid EEG–FNIRS BCIs. 

In emotion recognition tasks, hybrid ABC–GWO models have achieved near-perfect accuracy by combining 

GWO’s exploitation efficiency with ABC’s exploration. GWO’s adaptability has also made it effective in 

multimodal fusion, where it can balance the influence of EEG and FNIRS features. 

Compared to earlier algorithms, GWO consistently demonstrates faster convergence and better accuracy in 

high-dimensional feature spaces. However, like other swarm methods, it may suffer from reduced diversity 

in later iterations. To mitigate this, enhanced variants such as Chaotic GWO, Modified Grey Wolf Optimizer 

(MGWO), and Hybrid GWO–PSO have been proposed, yielding superior robustness and generalization in 

EEG classification [12]. 

3.6|Comparative Discussion 

The algorithms discussed above each embody unique mechanisms for exploring and exploiting the search 

space. Their relative effectiveness in BCI optimization depends on the problem type, objective function, and 

data characteristics. 

I. GA is best suited for discrete problems, such as feature or channel selection, but can be computationally 

intensive. 

II. PSO excels at continuous optimization, achieving fast convergence, but requires careful control to avoid 

premature stagnation. 

III. DE offers robustness against noise and is well-suited for tuning continuous parameters. 

IV. ACO performs exceptionally in combinatorial and discrete optimization but can be sensitive to parameter 

settings. 

X(t + 1) = Xp(t) − A ⋅ D,  



Parandavar |Metaheur. Algor. Appl. 2(2) (2025) 112-133 

 

125

 

  V. GWO provides a well-balanced trade-off between simplicity and effectiveness, often outperforming others 

in EEG feature selection and hybrid optimization. 

These algorithms are often embedded in wrapper-based frameworks, where the fitness function evaluates 

classification accuracy using a learning model such as an SVM or a CNN. This approach ensures that selected 

features or tuned parameters directly improve predictive performance. While this can be computationally 

expensive, it provides the highest relevance to the final BCI task [12]. 

3.7|Toward Hybrid and Adaptive Metaheuristics 

Recent trends indicate increasing interest in hybrid metaheuristics, in which two or more algorithms are 

combined to leverage their complementary strengths. For example: 

I. GA–PSO hybrids use GA’s genetic diversity with PSO’s rapid convergence. 

II. ABC–GWO and DE–ACO hybrids combine exploration and exploitation more effectively than any single 

algorithm. 

III. Newer bio-inspired methods, such as the TSR algorithm, integrate ecological cooperation and competition, 

further enhancing search diversity. 

These hybrid methods have shown superior results in EEG emotion recognition, speech imagery decoding, 

and MI classification. The ongoing evolution of metaheuristics from simple swarm models to ecologically 

inspired ecosystems signals a shift toward self-adaptive optimization frameworks, capable of dynamically 

adjusting search strategies based on feedback from BCI data. 

4|Applications in Electroencephalography/Functional Near-

Infrared Spectroscopy Brain–Computer Interface 

Metaheuristic algorithms have become indispensable tools for developing efficient and accurate BCI systems. 

Their flexible, model-free optimization strategies allow researchers to tackle complex problems in EEG and 

FNIRS signal analysis, where conventional deterministic or gradient-based approaches often fail. In particular, 

metaheuristics are used to optimize three major aspects of BCI pipelines: channel and feature selection, 

classifier tuning, and multimodal integration in hybrid EEG–FNIRS systems. 

Each of these tasks poses distinct challenges. EEG data are typically high-dimensional, comprising hundreds 

of time–frequency features across multiple electrodes, whereas FNIRS signals are slower and contain 

hemodynamic noise and drift. Both modalities are prone to inter-subject variability and session-to-session 

nonstationarity. Metaheuristic algorithms address these challenges by efficiently searching large, nonlinear 

solution spaces, often achieving better performance and generalization than manual or brute-force methods. 

The following subsections describe how metaheuristics have been applied across key areas of EEG- and 

FNIRS-based BCIs [3]. 

4.1|Channel and Feature Selection 

One of the earliest and most persistent problems in EEG and FNIRS analysis is the curse of dimensionality. 

The brain’s electrical and hemodynamic signals are distributed across multiple regions, yet only a subset 

contributes meaningful information for a given cognitive or motor task. Using all available channels or 

features not only increases computation time but also risks overfitting, especially when training data are 

limited. Thus, selecting the most informative channels and features is a critical step toward building efficient 

and interpretable BCIs. 

4.1.1|Electroencephalography channel optimization 

In EEG-based systems, electrode configuration plays a vital role in decoding performance. However, many 

electrodes record redundant or noisy information, making it unnecessary to use the full array in real-time 
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  applications. Metaheuristic algorithms such as PSO, GA, and GWO have been widely used to identify the 

optimal subset of electrodes that balances performance and computational cost. 

For example, PSO can model each particle as a binary vector indicating whether each electrode is selected. 

The fitness function typically combines classification accuracy and the number of selected electrodes. 

Through iterative refinement, PSO identifies compact electrode subsets that maintain or even improve 

decoding accuracy compared to full-channel setups. This optimization not only speeds up online computation 

but also enhances user comfort in wearable BCI devices. 

GWO, with its strong balance between exploration and exploitation, has emerged as a particularly effective 

algorithm for EEG channel selection. Modified versions, such as Binary GWO and Chaotic GWO, have 

achieved notable success in MI classification, cognitive workload detection, and emotion recognition. These 

methods adaptively explore spatial channel relationships, identifying electrodes that maximize the 

discriminability of brain states while maintaining robustness across users. 

Another trend involves multi-objective optimization, where the algorithm simultaneously minimizes channel 

count and maximizes accuracy. This approach provides a set of Pareto-optimal solutions, allowing researchers 

to select configurations that best match application constraints such as portability or latency. Such flexibility 

is invaluable for mobile and edge-deployable BCIs [12]. 

4.1.2|Feature selection in electroencephalography and functional near-infrared 

Spectroscopy 

Once relevant channels are determined, metaheuristics are also employed for feature selection, particularly 

when features are extracted from diverse domains (time, frequency, time–frequency, and connectivity). EEG 

features may include power spectral densities, entropy measures, wavelet coefficients, or phase 

synchronization metrics. Similarly, FNIRS features are derived from hemodynamic responses, often including 

changes in HbO, HbO2, and HbR concentrations. 

Metaheuristic algorithms such as DE, ACO, and Artificial Bee Colony (ABC) have proven effective in filtering 

redundant features while preserving discriminative information. In practice, each candidate feature subset is 

evaluated by training a classifier (e.g., SVM or CNN) and using its validation accuracy as the fitness score. 

Over iterations, the optimizer converges on subsets that balance compactness and performance. 

In FNIRS-based BCIs, the feature space tends to be smaller but still highly correlated due to the overlapping 

vascular responses. Metaheuristics such as PSO and GWO have been used to identify the most discriminative 

features, thereby improving classification performance in tasks such as mental arithmetic, workload 

assessment, and motor execution. These algorithms enhance interpretability by linking selected features to 

specific brain regions, offering insights into underlying neurophysiological mechanisms [14], [17], [18]. 

4.1.3|Hybrid Electroencephalography–functional near-infrared spectroscopy feature 

integration 

The integration of EEG and FNIRS signals introduces an additional layer of complexity. EEG provides high 

temporal precision, while FNIRS contributes complementary spatial information. However, fusing both 

modalities dramatically increases feature dimensionality. Metaheuristic algorithms address this challenge by 

jointly optimizing EEG and FNIRS features to maximize joint discriminability while minimizing redundancy 

across modalities. 

Algorithms such as the WOA and the Enhanced Grey Wolf Optimizer (E-GWO) have been applied to hybrid 

feature fusion, achieving higher accuracy than traditional methods. In some studies, hybrid EEG–FNIRS 

BCIs optimized via metaheuristics achieved over 90% accuracy with reduced feature sets, highlighting the 

potential of these algorithms in real-time multimodal systems [8]. 
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  4.2|Classifier Tuning and Hybrid Systems 

While channel and feature selection form the foundation of BCI optimization, classifier tuning is equally 

critical. Classifiers such as SVM, Linear Discriminant Analysis (LDA), and CNN are sensitive to 

hyperparameter settings. The performance of an SVM, for instance, can vary drastically with kernel 

parameters, whereas CNNs rely heavily on architectural decisions such as layer depth, filter size, and learning 

rate. Manual or grid-based tuning is inefficient and often fails to generalize across users or sessions. 

Metaheuristic algorithms provide an intelligent alternative [9], [17]. 

4.2.1|Optimization of classical machine learning models 

In traditional EEG and FNIRS BCIs, SVMs are among the most widely used classifiers due to their robustness 

to small datasets and high-dimensional features. Metaheuristics such as PSO, GA, and DE have been 

employed to optimize key parameters like the regularization Coefficient (C) and kernel width (γ). PSO, in 

particular, excels in this context due to its fast convergence and ability to handle continuous-valued 

parameters. 

For example, in EEG MI classification, PSO-tuned SVMs have achieved up to 10% higher accuracy than 

untuned baselines. Similarly, GA-optimized SVMs have been used for emotion recognition from EEG and 

for decoding the hemodynamic response in FNIRS. ACO and ABC algorithms have also been integrated into 

ensemble learning frameworks, optimizing weights among multiple classifiers to improve generalization. 

In addition to SVMs, metaheuristics have been used to tune parameters of ELMs and Random Forests. These 

algorithms benefit from the global search capabilities of metaheuristics, which can efficiently find parameter 

combinations that yield better decision boundaries and higher robustness to noise [10]. 

4.2.2|Neural network and deep learning optimization 

As deep learning gained traction in BCI research, the role of metaheuristics expanded from parameter tuning 

to architecture search. Algorithms such as GA, PSO, and GWO have been used to determine the optimal 

number of layers, neurons, activation functions, and dropout rates for CNNs and RNNs. For EEG-based 

emotion recognition and speech imagery tasks, hybrid GA–PSO models have been particularly effective, 

automating the design of CNN architectures tailored to specific feature representations. 

Metaheuristics have also been applied to optimize learning rates and weight initialization strategies, addressing 

common challenges in deep model training. This synergy between deep learning and metaheuristics, 

sometimes called meta-deep optimization, bridges data-driven learning with global search intelligence, 

producing models that are both accurate and more interpretable [9], [12], [14], [17], [18]. 

4.2.3|Hybrid electroencephalography–functional near-infrared spectroscopy systems 

Hybrid BCIs that integrate EEG and FNIRS signals have attracted growing attention for their ability to 

leverage both temporal and spatial dimensions of brain activity. However, achieving effective fusion requires 

optimizing numerous parameters: signal synchronization, feature weighting, classifier blending, and decision 

fusion strategies. Metaheuristics play a pivotal role in these tasks. 

For instance, multi-objective PSO has been used to determine the optimal weighting scheme for EEG and 

FNIRS features in decision-level fusion, balancing each modality’s contribution based on its signal-to-noise 

characteristics. Similarly, DE and GWO have been used to tune hybrid neural network classifiers, adapting 

them to the distinct dynamics of electrical and hemodynamic signals. 

Beyond fusion, metaheuristics contribute to adaptive calibration, a major challenge in hybrid systems. EEG 

signals often require recalibration for each user and session, whereas FNIRS has slower responses but better 

cross-subject stability. Metaheuristics can optimize calibration schedules and transfer learning parameters to 

reduce user-specific retraining time, pushing hybrid BCIs closer to real-world usability [8], [14]. 
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  4.3|Broader Implications 

The successful application of metaheuristics to both EEG and FNIRS BCIs demonstrates their versatility 

and potential to shape next-generation neurotechnologies. By automating feature, channel, and classifier 

optimization, these algorithms not only enhance accuracy and robustness but also move BCIs toward real-

time adaptability and user-specific customization. 

In practice, combining these optimization strategies, such as using GWO for channel selection, DE for 

parameter tuning, and PSO for multimodal fusion, forms the backbone of hybrid metaheuristic frameworks 

that can dynamically adapt to changing cognitive states and environmental conditions. As research progresses, 

these adaptive optimization methods will become essential for achieving plug-and-play BCIs that require 

minimal calibration and deliver reliable performance across diverse users and applications [13], [17], [20]. 

5|Case Study: The Trees' Social Relationship Algorithm 

Among the latest wave of bio-inspired metaheuristic algorithms, the TSR algorithm represents a distinctive 

and promising approach to global optimization. Unlike many traditional methods that draw on animal 

behavior or physical laws, TSR is rooted in ecological principles, specifically the cooperative and competitive 

interactions among trees within a forest ecosystem. The algorithm captures how trees coexist, share resources, 

and adapt dynamically to their surrounding environment while competing for sunlight, nutrients, and space. 

This ecological balance between cooperation and competition forms a compelling analogy for optimization: 

solutions (trees) grow and evolve not in isolation, but through dynamic interactions with other members of 

the ecosystem (the population). TSR formalizes this process into a computational framework capable of 

handling continuous, discrete, and multi-objective optimization tasks, making it particularly relevant to 

complex, nonlinear domains such as BCIs [12]. 

5.1|Conceptual Foundations and Inspiration 

In nature, trees form intricate social networks beneath the soil, connected by mycorrhizal fungal networks 

that facilitate nutrient exchange and chemical signaling. While they compete for light and space, they also 

cooperate to maintain the health and balance of the forest ecosystem. TSR translates these dynamics into 

mathematical interactions among solutions in the search space. 

Each individual in the population represents a tree, characterized by its position (solution vector), fitness 

(objective value), and growth state (adaptive behavior). The algorithm divides the population into subgroups, 

representing clusters of trees that compete within their local neighborhood while also sharing information 

globally. This balance maintains diversity and prevents premature convergence, a main drawback of many 

metaheuristic algorithms such as PSO and GA. 

The overarching principle is straightforward yet powerful: trees that thrive in resource-rich conditions (high-

fitness solutions) influence others through cooperation, while those in less favorable environments explore 

new areas through competition and adaptation. Over successive generations, this dynamic interaction drives 

the ecosystem toward global optimality. 

5.2|Algorithmic Structure and Workflow 

The TSR algorithm operates through four major stages that mimic ecological processes: initialization, 

competition, cooperation, and adaptation. 

 

Initialization 

A population of N trees is randomly distributed within the search space, representing potential solutions. 

Each tree’s position vector corresponds to candidate parameter values or feature selections. An objective 
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  (fitness) function evaluates each tree based on the task, for example, classification accuracy or mean squared 

error. 

Competition phase 

Competition models the struggle among trees for limited resources such as light or nutrients. Trees with 

higher fitness dominate their local environment, while weaker trees are forced to explore new regions. This 

mechanism encourages exploration by pushing less fit individuals to distant parts of the search space, reducing 

the risk of stagnation. 

Mathematically, each tree’s position is updated by a competitive function: 

where Ti is the current tree, Tbestrepresents the fittest tree in the population, and parameters α and β control 

the competition intensity and randomness. This step mimics directional adaptation toward better resource 

conditions. 

Cooperation phase 

In the cooperation stage, trees exchange information and share “resources” (solution characteristics). This 

process reflects how real trees may allocate nutrients or regulate growth collectively to sustain ecosystem 

stability. Cooperation promotes exploitation, refining solutions by aligning subgroups toward locally optimal 

regions. 

Each tree updates its position based on a cooperative exchange model: 

where Tj is a cooperating tree randomly selected from the population, and γ is the cooperation coefficient 

governing how strongly individuals influence each other. Through this phase, TSR strengthens local 

convergence without losing diversity. 

Adaptation and regeneration 

After several cycles of competition and cooperation, the algorithm applies an adaptation mechanism. Poorly 

performing trees are “regenerated” in new random positions, analogous to new seedlings sprouting in open 

areas of the forest. This regeneration introduces fresh diversity and ensures that the population continues 

exploring unvisited regions. 

The iterative balance between competition, cooperation, and regeneration underpins TSR’s adaptive 

intelligence. The process repeats until a termination criterion, such as a maximum iteration count or a 

satisfactory fitness level, is met. 

5.3|Advantages of Trees Social Relationship Over Conventional Metaheuristics 

TSR stands out among metaheuristics for several distinctive strengths that address long-standing challenges 

in optimization for BCI systems: 

Balance between exploration and exploitation 

TSR’s dual-phase structure ensures that global exploration (competition) and local exploitation (cooperation) 

coexist dynamically. Unlike PSO, which can prematurely collapse toward a single solution, TSR maintains 

population diversity longer, thereby improving its ability to escape local minima. 

 

Adaptive diversity control 

Ti
new = Ti + α ⋅ (Tbest − Ti) + β ⋅ rand(−1,1),  

Ti
new = Ti + γ ⋅ (Tj − Ti),  
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  Through its regeneration mechanism, TSR introduces new candidate solutions when the search begins to 

stagnate. This built-in diversity management prevents premature convergence, a problem often observed in 

GA and DE. 

Parameter simplicity 

TSR requires fewer control parameters than algorithms like GA (which requires crossover/mutation rates) or 

PSO (which relies on inertia weights and acceleration coefficients). This makes TSR easier to tune for new 

problems and more robust across varying datasets. 

Suitability for mixed optimization spaces 

Many real-world BCI tasks involve both discrete (e.g., channel selection) and continuous (e.g., filter 

bandwidths, learning rates) parameters. TSR handles both seamlessly within a unified framework, offering a 

flexibility that many classical algorithms lack. 

High convergence efficiency 

Early benchmark studies have demonstrated that TSR converges faster and more consistently than GA, PSO, 

and GWO on standard test functions. This efficiency is attributed to its cooperative exchange, which 

accelerates exploitation without sacrificing exploration. 

5.4|Potential Applications of Trees' Social Relationship in Brain–Computer 

Interface Systems 

Although TSR is a relatively new algorithm, its characteristics make it well-suited to the unique demands of 

BCI optimization. EEG and FNIRS signal processing often involves nonlinear, high-dimensional, and noisy 

objective functions, conditions under which TSR excels. 

5.4.1|Feature and channel selection 

One of the most promising applications of TSR is in EEG channel selection and feature subset optimization. 

Here, each tree represents a binary vector where ‘1’ indicates a selected channel or feature. The fitness 

function measures classification accuracy achieved using the selected subset. TSR’s ability to balance 

exploration and exploitation allows it to identify compact, high-performance feature sets efficiently. 

For example, in EEG-based MI tasks, TSR could optimize spatial feature subsets derived from CSP or wavelet 

coefficients. Similarly, in hybrid EEG–FNIRS systems, TSR could identify complementary feature pairs 

across modalities, maximizing temporal and spatial information simultaneously. 

5.4.2|Neural network parameter tuning 

TSR is equally effective in neural network optimization, where it can fine-tune parameters such as the learning 

rate, the number of neurons, and regularization coefficients. Compared to grid search or Bayesian 

optimization, TSR can explore a wider range of nonlinear dependencies among hyperparameters. 

Applied to EEGNet or CNN-based architectures, TSR can optimize convolutional kernel sizes, dropout 

ratios, and activation parameters, yielding higher accuracy with fewer training epochs. Its population-based 

nature makes it naturally parallelizable, an advantage for GPU-based BCI model training. 

5.4.3|Transfer learning and adaptation 

Cross-subject and cross-session variability remains a major bottleneck in BCI systems. TSR can play a key 

role in transfer learning and domain adaptation by optimizing parameters that align feature distributions 

across sessions or users. For instance, it can fine-tune transfer coefficients or pseudo-label confidence 

thresholds to minimize domain shift, enabling more stable decoding over time. 
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  Additionally, in online adaptive BCIs, TSR can dynamically adjust learning parameters based on real-time user 

or environmental feedback. Its regeneration mechanism allows it to adapt continuously without requiring 

complete retraining, a critical feature for practical, long-term BCI use. 

5.4.4|Reinforcement learning integration 

TSR can be integrated with Deep Reinforcement Learning (DRL) frameworks, where it serves as a meta-

controller that optimizes reward functions, exploration rates, or network architectures. This integration 

creates self-optimizing, closed-loop BCIs that dynamically adapt their behavior during operation. 

For example, a TSR-DRL hybrid could tune policy network hyperparameters or reward shaping factors in a 

neurofeedback system, ensuring efficient learning across users with diverse neural responses. 

5.5|Comparative Insights and Future Outlook 

When compared with traditional metaheuristics, TSR’s ecological foundation introduces a new dimension of 

adaptivity and stability. While algorithms like GA and PSO rely heavily on stochastic randomness, TSR 

leverages structured social interactions, enabling more controlled, interpretable search dynamics. This aligns 

well with the growing demand for Explainable Artificial Intelligence (XAI) in neuroscience, where 

understanding how and why certain features are optimized is as important as the performance itself. 

The TSR algorithm’s capacity for multi-objective optimization further strengthens its position in modern BCI 

research. Many BCI objectives, such as accuracy, latency, energy efficiency, and interpretability, are inherently 

conflicting. TSR’s cooperative and competitive phases can be extended to address trade-offs among these 

objectives, yielding Pareto-optimal solutions that yield balanced system configurations. 

In addition, TSR’s low parameter count and adaptability make it suitable for edge deployment, a key goal for 

next-generation BCIs. On-device optimization, where TSR continuously tunes model parameters during use, 

could enable personalized BCIs that evolve with the user’s cognitive and physiological state. 

Future work could extend TSR into hybrid frameworks, combining it with DNNs or RL systems to create 

self-adaptive, explainable, and energy-efficient BCI architectures. Moreover, its ecological metaphor lends 

itself to integration with other nature-inspired models, such as forest fire dynamics or nutrient flow 

simulation, to further enrich its adaptive mechanisms. 

The TSR algorithm represents a significant step forward in the evolution of metaheuristic optimization. 

Rooted in ecological intelligence rather than animal or physical analogies, TSR models the cooperative-

competitive balance that defines real-world ecosystems. Its capacity to maintain population diversity, adapt 

dynamically, and handle both discrete and continuous variables makes it exceptionally well-suited to the 

multifaceted optimization challenges of EEG- and FNIRS-based BCI systems. 

By enabling robust feature selection, efficient neural network tuning, and adaptive learning across users and 

sessions, TSR stands poised to become a cornerstone of future BCI optimization frameworks. As research in 

hybrid and explainable BCIs continues to expand, TSR offers not only performance improvements but also 

conceptual clarity embodying the principle that intelligence, whether biological or artificial, thrives through 

balance, adaptation, and interconnection. 

6|Conclusion 

Metaheuristic algorithms are increasingly important in the development of high-performance BCI systems. 

Whether applied to EEG, FNIRS, or hybrid setups, these algorithms help automate feature selection, 

optimize classifiers, and enhance the adaptability of BCI pipelines. The review of methods such as GA, PSO, 

DE, ACO, and GWO illustrates their flexibility and robustness in handling complex, non-linear optimization 

tasks. 

As new challenges emerge in BCI, such as real-time processing, subject variability, and hybrid modality 

integration, metaheuristics will continue to offer elegant, biologically inspired solutions. Algorithms like TSR 
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  represent the next generation of optimization techniques, with mechanisms designed to reflect the complexity 

and adaptability required in modern neurotechnologies. 

Looking ahead, integrating metaheuristics with deep learning, transfer learning, and RL may further accelerate 

progress in the field. Metaheuristics are not just tools for solving technical problems; they are becoming 

foundational to the evolution of BCI itself. 
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